
AT32 USB Multi Bridge

2024.08.20 1 Ver 2.0.1

AN0212

Application Note

AT32 USB Multi Bridge

Introduction
AT32 USB multi-function bridge provides a dedicated high-speed USB interface to communicate
with the target through interfaces such as UART, CAN, SPI, I2C and RS485. The USB transfers
peripheral data according to the CDC protocol, which can be implemented in conjunction with
USART IAP, CAN IAP, SPI IAP, I2C IAP. The USB CDC driver needs to be installed in some
systems.

Applicable peripherals:

 USB to USART

 USB to CAN

 USB to SPI

 USB to I2C

 USB to RS485

Applicable products:

Part number AT32F405 series

AT32 USB Multi Bridge

2024.08.20 2 Ver 2.0.1

Contents

 Overview ... 5

 USB bridge features ... 5

 Select a peripheral ... 5

 Modify baud rate ... 7

 Hardware .. 8

 Software ... 9

 Demo project .. 9

 USB-to-USART ... 10

 Connection ... 10

 USB-to-CAN ... 11

 Connection .. 11

 Data transfer between USB and CAN ... 11

 USB-to-SPI .. 13

 Connection ... 13

 Data transfer between USB and SPI .. 13

 USB-to-I2C ... 14

 Connnection ..错误!未定义书签。

 Data transfer between USB and I2C interface... 14

 USB-to-RS485... 15

 Connection ... 15

 Revision history ... 16

AT32 USB Multi Bridge

2024.08.20 3 Ver 2.0.1

List of tables

Table 1. Baud rate for CAN .. 7

Table 2. Clock frequency for SPI ... 8

Table 3. Clock frequency for I2C .. 8

Table 4. Document revision history .. 16

AT32 USB Multi Bridge

2024.08.20 4 Ver 2.0.1

List of figures

Figure 1. USB SETUP request format ... 6

Figure 2. SET LINE CODING command ... 7

Figure 3. Line Coding Structure ... 7

Figure 4. AT32-USBHS-Adaptor .. 8

Figure 5. Connection diagram ... 9

Figure 6. Connection between USB adaptor and USART .. 10

Figure 7. Connection between USB adaptor and CAN ... 11

Figure 8. Connection between USB adaptor and SPI ... 13

Figure 9. Connection between USB adaptor and I2C .. 14

Figure 10. Connection between USB adaptor and RS485 interface ... 15

AT32 USB Multi Bridge

2024.08.20 5 Ver 2.0.1

 Overview

 USB bridge features

The AT32 device emulates a COM port according to the USBHS CDC protocol to support several
peripherals. User can select one peripheral to be used at a time through USB control request and
change the peripheral baud rate though the “SET LINE CODEING” command.

Applicable peripherals include:

 USB to USART

 USB to CAN

 USB to SPI

 USB to I2C

 USB to RS485

 Select a peripheral

Users can select a peripheral by one of the following means:

 Select the desired peripheral during code initialization and do not change it anymore.

 Select the current peripheral in a real-time manner through USB endpoint SETUP request.

 Select the current peripheral though USB HID command.

 Select a peripheral during initialization
During initialization, the USB Multi Bridge can set the current interface through
“usb_multi_bridge_set_type(USB_TO_USART);” function, including:

USB_TO_USART

USB_TO_CAN

USB_TO_SPI

USB_TO_I2C

USB_TO_RS485

USB_TO_IDLE (idle state, no peripheral connected)

 Select a peripheral through USB control request
In addition, users can select the desired peripheral through USB endpoint 0 SETUP command.
Refer to Universal Serial Bus Specification 2.0. The SETUP packet format is shown below.

AT32 USB Multi Bridge

2024.08.20 6 Ver 2.0.1

Figure 1. USB SETUP request format

USB-TO-USART enable:

bmRequesType bRequest wValue wIndex wLength

0x40 0x01 0x0000 0x0000 0x0000

USB-TO-CAN enable:

bmRequesType bRequest wValue wIndex wLength

0x40 0x01 0x0001 0x0000 0x0000

USB-TO-SPI enable:

bmRequesType bRequest wValue wIndex wLength

0x40 0x01 0x0002 0x0000 0x0000

USB-TO-I2C enable:

bmRequesType bRequest wValue wIndex wLength

0x40 0x01 0x0003 0x0000 0x0000

USB-TO-RS485 enable:

bmRequesType bRequest wValue wIndex wLength

0x40 0x01 0x0004 0x0000 0x0000

AT32 USB Multi Bridge

2024.08.20 7 Ver 2.0.1

 Select a peripheral through HID command
Besides, users can set the peripheral through the device HID command (HID VID (0x2E3C),
PID(0xFF01)).

Set the host (HID data) to select a peripheral, as shown below:

HID data USB bridge

0xA1 0x00 USB TO USART

0xA1 0x01 USB TO CAN

0xA1 0x02 USB TO SPI

0xA1 0x03 USB TO I2C

0xA1 0x04 USB TO RS485

 Modify baud rate

The baud rate or frequency varies from peripherals, which can be set through the SET LINE
CODING command.
Note: Considering the external circuit configuration, it is possible to reduce the communication rate
in case of communication failure.

Figure 2. SET LINE CODING command

Line coding structure: Transmit the baud rate through “dwDTERate”.

Figure 3. Line Coding Structure

Offset Field Size Value Description

0 dwDTERate 4 Number Data terminal rate, in bits per second.

4 bCharFormat 1 Number Stop bits 0 - 1 Stop bit 1 - 1.5 Stop bits 2 - 2 Stop bits

5 bParityType 1 Number Parity 0 - None 1 - Odd 2 - Even 3 - Mark 4 - Space

6 bDataBits 1 Number Data bits (5, 6, 7, 8 or 16).

USART and RS485: 1600 bps~6 Mbps

CAN:

Table 1. Baud rate for CAN

Baud rate DwDTERate

1 Mbps 1000000

500 kbps 500000

250 kbps 250000

125 kbps 125000

AT32 USB Multi Bridge

2024.08.20 8 Ver 2.0.1

SPI:

Table 2. Clock frequency for SPI

Clock frequency DwDTERate

13.5 MHz 13500000

6.75 MHz 6750000

3.375 MHz 3375000

1.6875 MHz 1687500

0.84375 MHz 843750

I2C:

Table 3. Clock frequency for I2C

Clock frequency DwDTERate

1 MHz 1000000

400 kHz 400000

200 kHz 200000

100 kHz 100000

50 kHz 50000

10 kHz 10000

 Hardware

1. USB adaptor (AT32-USBHS-Adaptor)

2. USB cable

Figure 4. AT32-USBHS-Adaptor

3. Power supply: The device is powered by 5V through CN1 USB interface, and it supplies the
external with 3.3V/350mA power.

AT32 USB Multi Bridge

2024.08.20 9 Ver 2.0.1

4. LED

● Power: Red LED indicates that the AT32 USBHS Adaptor is powered.

● Mode indicator: LD1, LD2 and LD3, as detailed below.

MODE LD1 LD2 LD3

USB to USART √

USB to SPI √

 USB to I2C √

USB to CAN √ √

USB to RS485 √ √

 Software

1) SourceCode\utilities\usb_multi_bridge

Note: The demo project is built around Keil v5. If users want to use them in other compiling environments, please

refer to AT32F403A_407_Firmware_Library_V2.x.x\project\at_start_f403a\templates (such as IAR6/7/8, Keil 4/5,

eclipse_gcc) for a simple change.

 Demo project

1) Open the “usb_multi_bridge” source program, and select the desired peripheral by calling

“usb_multi_bridge_set_type(USB_TO_USART)”. Then, compile and download to the USB

adaptor.

2) Connect USB cable to PC, and then a virtual COM device can be found in PC Manager, which

can be debugged through the host virtual serial port tool.

Figure 5. Connection diagram

PC AT32-USBHS-Adaptor

AT32 MCU

AT32 Target Board

USART/CAN/SPI/I2C
/RS485USB

AT32 USB Multi Bridge

2024.08.20 10 Ver 2.0.1

 USB-to-USART
USB-to-USART bridge realizes a virtual serial port device on USB end. The USB adaptor
communicates with the PC host through USB and with the upper computer through USART, thus to
implement data transfer between USB and USART. Note that the adaptor USART baud rate should
be the same as that of the lower computer USART.

 Connection

The USB-to-USART bridge is realized through AT32 USBHS Adaptor. The adaptor RX and TX are
connected to the target board TX and RX, respectively.

Figure 6. Connection between USB adaptor and USART

Relevant data formats:

Data bit Stop bit Parity check Baud rate

7, 8, 9 1, 1.5, 2 Odd, even, none 1600bps~6Mbps

Refer to Section 1.1.2 for modification of baud rate and data.

AT32 USB Multi Bridge

2024.08.20 11 Ver 2.0.1

 USB-to-CAN
USB-to-CAN bridge realizes a virtual serial port device on USB end. The USB adaptor
communicates with the PC host through USB and with the upper computer through CAN, thus to
implement data transfer between USB and CAN. Note that the adaptor CAN baud rate should be
the same as that of the lower computer CAN. The CAN baud rate is 500 kbps, by default.

 Connection

The USB-to-CAN bridge is realized through AT32 USBHS Adaptor. The adaptor CANH and CANL
are connected to the target board CANH and CANL, respectively.

Figure 7. Connection between USB adaptor and CAN

 Data transfer between USB and CAN

The USB-to-CAN bridge is packaged according to CAN protocol, and the format is as follows:

Frame ID
(4 bytes)

ID type
(1 byte)

Frame type
(1 byte)

Frame length
(1 byte)

Data
(n byte(s), n<=8)

Frame ID: support 11-bit standard frame ID and 29-bit extended frame ID; LSB first
ID type: 0 stands for standard ID (the lower 11 bits are valid), and 1 stands for extended ID (the
lower 29 bits are valid)
Frame type: 0 stands for data frame, and 1 stands for remote frame
Frame length: the frame size is less than 8 according to the CAN2.0 standard
Data: frame data

Refer to Section 1.1.2 for CAN baud rate.

Data transfer from USB to CAN bus
One USB data packet is converted into a frame of CAN data.
Received USB data packet, for example, 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x11 0x22
The first 4 bytes (0x00 0x00 0x00 0x00): frame ID (MSB)
The 5th byte (0x00): standard frame ID, lower 11 bits valid
The 6th byte (0x00): data frame
The 7th byte (0x02): data frame length
The 8th and 9th bytes (0x11,0x22): specific frame data

Convert to a frame of CAN data:
Standard frame ID=0x0001
DLC=0x02
DATA0=0x11
DATA1=0x22

AT32 USB Multi Bridge

2024.08.20 12 Ver 2.0.1

Data transfer from CAN bus to USB
A frame of CAN data is converted to one USB data packet.
Received one standard data frame, for example, ID=0x02, DLC=0x03, DATA0=0x11, DATA0=0x22,
DATA0=0x33

Convert to one USB data packet: 0x00 0x00 0x00 0x02 0x00 0x00 0x03 0x11,0x22,0x33
The first 4 bytes (0x00 0x00 0x00 0x02): standard frame ID
The 5th byte (0x00): standard frame ID
The 6th byte (0x00): data frame
The 7th byte (0x03): data frame length
The 8th, 9th and 10 the bytes (0x11,0x22 0x33) specific frame data

AT32 USB Multi Bridge

2024.08.20 13 Ver 2.0.1

 USB-to-SPI
USB-to-SPI bridge realizes a virtual serial port device on USB end. The USB adaptor communicates
with the PC host through USB and with the upper computer through SPI, thus to implement data
transfer between USB and SPI. Note that the adaptor SPI serves as the master.
SPI master configuration:
 Set SPI master mode
 Full-duplex mode
 8-bit MSB
 Polarity: CPOL High, CPHA low, NSS software

 Connection

The USB-to-SPI bridge is realized through AT32 USBHS Adaptor. The adaptor MOSI, MISO, SCK
and CS are connected to the target board MOSI, MISO, SCK and CS, respectively.

Figure 8. Connection between USB adaptor and SPI

 Data transfer between USB and SPI

SPI transmits and receives data in full-duplex mode. A packet contains up to 512-byte data. If the
data is greater than 512 bytes, it needs to be divided into several packets for transmission.

Host PC data transmit:
Example:
The host PC transmits 8 data to the target board, i.e., 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08.
1. The host PC sends 8 bytes (0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08) directly;
2. The host PC needs to read another 8 bytes of dummy data.

Host PC data read:
Example:
The host PC reads 8 data from the target board.
1. The host PC sends 8 bytes of dummy data;
2. The host PC reads 8 bytes of data from the target board.

Refer to Section 1.1.2 for SPI clock frequency.

AT32 USB Multi Bridge

2024.08.20 14 Ver 2.0.1

 USB-to-I2C
USB-to-I2C bridge realizes a virtual serial port device on USB end. The USB adaptor communicates
with the PC host through USB and with the upper computer through I2C, thus to implement data
transfer between USB and I2C. Note that the adaptor I2C serves as the master, and the I2C master
address is 0x0C.
I2C configuration:
 Set I2C master mode
 Address: 0x0C

 Connection

The USB-to-I2C bridge is realized through AT32 USBHS Adaptor. The adaptor SCL and SDA are
connected to the target board SCL and SDA, respectively.
By default, the AT32 USBHS Adaptor is configured with 4.7 kΩ pull-up resistors (R30/R31) on SCL
and SDA lines.

Figure 9. Connection between USB adaptor and I2C

 Data transfer between USB and I2C interface

Use I2C interface to Transmit and receive data through I2C interface. One packet contains a
maximum of 512 bytes of data. If the data is more than 512 bytes, it should be transmitted in several
packets.

USB-to-I2C data package format:

Direction
(1 byte)

Address
(2 bytes)

Data transfer length
(2 bytes)

Data
(n byte)

Direction: 0x55 stands for sending I2C data to the target board; 0xAA stands for reading I2C data
from the target board.
Address: 2-byte target board address (MSB)
Data length: the length of data to be sent or read, which is less than or equal to 507 bytes (MSB)
Data: the data to be sent or read

Refer to Section 1.1.2 for I2C clock frequency.

Host PC data transmit:
Example: The host PC sends 8 data to the target board (address: 0xA0), i.e., 0x01 0x02 0x03 0x04
0x05 0x06 0x07 0x08
Host PC sends a packet: 0x55 0x00 0xA0 0x00 0x08 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

Host PC data read:
Example: The host PC reads 8 data from the target board (address: 0x2C).
1. The host PC sends 0xAA 0x00 0xA0 0x00 0x08, which means that it reads 8 data;
2. The host PC read and parse the data returned by USB, i.e., 0xAA 0x00 0xA0 0x00 0x08 0x01

0x02 0x03 0x04 0x05 0x06 0x07 0x08

AT32 USB Multi Bridge

2024.08.20 15 Ver 2.0.1

 USB-to-RS485
USB-to-RS485 bridge realizes a virtual serial port device on USB end. The USB adaptor
communicates with the PC host through USB and with the upper computer through RS485
interface, thus to implement data transfer between USB and RS485 interface.

 Connection

The USB-to-RS485 bridge is realized through AT32 USBHS Adaptor. The adaptor RS485-A and
RS485-B are connected to the target board A and B, respectively.

Figure 10. Connection between USB adaptor and RS485 interface

AT32 USB Multi Bridge

2024.08.20 16 Ver 2.0.1

 Revision history

Table 4. Document revision history

Date Version Revision note

2024.07.18 2.0.0 Initial release.

2024.08.20 2.0.1
Optimized document description.

Added description of LED mode.

AT32 USB Multi Bridge

2024.08.20 17 Ver 2.0.1

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY’s products and services; ARTERY assumes no liability for

purchasers’ selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous

representation in any forms. If any part of this document involves third party’s products or services, it does NOT imply that ARTERY

authorizes the use of the third party’s products or services, or permits any of the intellectual property, or guarantees any uses of the third

party’s products or services or intellectual property in any way.

Except as provided in ARTERY’s terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty,

relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a

particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other

intellectual property right.

ARTERY’s products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have

specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements

on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other

applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above -mentioned

purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks

caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with

all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will

immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, an d

ARTERY disclaims any responsibility in any form

© 2024 ARTERY Technology – All Rights Reserved

	1 Overview
	1.1 USB bridge features
	1.1.1 Select a peripheral
	1.1.1.1 Select a peripheral during initialization
	1.1.1.2 Select a peripheral through USB control request
	1.1.1.3 Select a peripheral through HID command

	1.1.2 Modify baud rate
	1.1.3 Hardware
	1.1.4 Software

	1.2 Demo project

	2 USB-to-USART
	2.1 Connection

	3 USB-to-CAN
	3.1 Connection
	3.2 Data transfer between USB and CAN

	4 USB-to-SPI
	4.1 Connection
	4.2 Data transfer between USB and SPI

	5 USB-to-I2C
	5.1 Connection
	5.2 Data transfer between USB and I2C interface

	6 USB-to-RS485
	6.1 Connection

	7 Revision history

